The effects of hearing loss on children’s ability to attend in the classroom

Andrea Pittman, PhD CCC-A
Arizona State University
Issue #1

• Children with hearing loss have unique needs
 – Children vs. adults
 • Think differently
 • Lack world knowledge
 • Bombarded with new information every day
 • Physically small and grow rapidly
 • Unique listening situations
 • Less/no control over their listening environment
Issue #1

• Children with hearing loss have unique needs
 – Hearing impaired vs. normal hearing
 • Higher signal-to-noise ratio
 • Wider bandwidth
 • More repetitions to learn/communicate
Issue #1

• Children with hearing loss have unique needs
 – Children with hearing loss vs. everyone else
 • Have no reference to normal hearing
 • Cannot participate in hearing aid fitting process
 • Effects of hearing loss are pervasive
 – Academic
 – Social
 – Emotional
 – Vocational
Issue #2

- Hearing aids now include many advanced signal processing features but the way they work is a mystery.
- Designed to improve signal audibility and listening comfort:
 - Wide dynamic range compression
 - Directional microphones
 - Frequency lowering
 - Digital noise reduction
 - Feedback suppression
Issue #2

• Hearing aids now include many advanced signal processing features but the way they work is a mystery
 – Digital noise reduction (Hoetink et al 2009)
Issue #2

• Hearing aids now include many advanced signal processing features but the way they work is a mystery

• Development has been recent and rapid
 – No ANSI standards regarding the manner in which performance is reported
 – Lack of evidence regarding effectiveness in children
 – Current pediatric amplification guidelines do not include advice regarding advanced features
Converging Issues

• Pediatric audiologists are fitting very young children with advanced signal processing (Rigsby et al, 2008)
These issues have converged to create a pressing need for research to determine the impact of advanced signal processing on children’s communication development.
Evaluating Advanced Signal Processing in Children with Hearing Loss

- 2-year project funded by a grant from the ASHA Foundation
- Digital Noise Reduction
 - Elementary school classrooms are noisy
 - Classroom learning is largely oral
 - DNR has the potential to make more of the auditory signal available to children to improve their performance for auditory tasks
Digital Noise Reduction

• Studies in adults have been... boring.

• Paradigms
 – Speech perception in noise (% correct)
 – Speech recognition threshold (SRT) in noise (dB SNR)

• Results
 – No improvement in performance with the use of digital noise reduction
 – No decrement in performance either*
Our Approach

• Use materials and methods consistent with the listening demands placed on children in the classroom to reveal practical benefits of advanced signal processing.

• Divided Attention (Multitasking)
 – Speech perception
 – Information processing
 – Noise
 – Attending to concurrent tasks
Divided Attention

apple

apple

?
Divided Attention

• Hicks & Tharpe (2002)

Auditory
Word repetition
Percent words correct
Varied signal-to-noise

Visual
Button pushing
Reaction time
Divided Attention

- Hicks & Tharpe (2002)

Auditory
- Word repetition
- Percent words correct
- Varied signal-to-noise

Visual
- Button pushing
- Reaction time

Diagram:

Word Repetition
- Signal-to-Noise Ratio

Reaction Time
- Signal-to-Noise Ratio
Divided Attention

apple

FOOD
Divided Attention

- McFadden & Pittman (2008)

Auditory
- Word categorization
- Percent words correct
- Signal-to-noise

Visual
- Dot-to-dot games
- Dots/minute

Person
Food
Animal
Divided Attention

- McFadden & Pittman (2008)

Auditory
- Word categorization
- Percent words correct
- Signal-to-noise

Visual
- Dot-to-dot games
- Dots/minute

Signal-to-Noise Ratio

Word Categorization
Divided Attention

• Overall conclusions
 – Children’s performance for visual tasks is not affected by their performance for auditory tasks
 – Don’t know if children’s performance for auditory tasks is affected by visual tasks
Divided Attention
Effects of Digital Noise Reduction on Children’s Performance in Progressively Demanding Listening Conditions

• Purpose
 – To determine the effect of task demand on children’s ability to process auditory information
 – To determine the benefits of digital noise reduction to manage those demands
Conditions

- Used noise and a visual task as competitors to an auditory task
 - Auditory task alone
 - Auditory + visual
 - Auditory + noise
 - Auditory + visual + noise
 - Auditory + visual + noise + digital noise reduction
Method

• Subjects
 – 8- to 12-years old children
 • Equal numbers in each age group (8, 9, 10...)
 • Equal numbers of boys and girls
 – Mainstreamed into public schools or home schooled
 – Performing at grade level
Method

• Hearing
 – 50 children with normal hearing
 – 30 children with hearing loss
 • Mild to moderately-severe
 • Degree of loss appropriate for amplification

• Receptive Vocabulary
 – PPVT IIIIB

• Speech Intelligibility Index (SII)
 – Audibility in quiet and noise
Which hearing aid to use?

- Phonak Naida
- Widex Mind
- ReSound Azure
- Siemens Explorer
Stimuli

- 5 lists of 30 words
 - Words common to children
 - Drawn from three categories
 - Person (exp: policeman, uncle)
 - Food (exp: donut, hamburger)
 - Animal (exp: frog, cat, gopher)
- Children indicated the category to which each word belonged
Stimuli

- Presented in the sound field
 - 0 degrees azimuth
 - 50 dB SPL
 - Broadband noise at 0 dB SNR

- Noise Reduction On
 - Overall level -4 dB
 - SNR +2 dB
Visual Task

• Dot-to-dot games
 – Booklet
 – Dots numbered in increments of 3
 – Starting point of each game was identified

• Scored in dots/min
Let’s try it!

Person

Food

Animal
Results

![Graph 1: PPVT Age vs Chronological Age](image1)
- NHC $r^2=0.36$
- HIC $r^2=0.54$

![Graph 2: Performance vs Speech Intelligibility](image2)
- Single Task $r^2=0.37$
- Dual Task $r^2=0.27$
Results

• Significant Effects:
 – Age
 – Group
 – Condition
 – Group x Condition Interaction
Results

• Significant Effects:
 – Age
 – Group
 – Condition
 – Group x Condition Interaction

• Not Significant:
 – DNR
Factor Analysis

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>Description</th>
<th>% Variability Accounted for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>PPVT age, chrono age</td>
<td>30%</td>
</tr>
<tr>
<td>Audibility</td>
<td>SII in quiet/noise, PTA</td>
<td>28%</td>
</tr>
<tr>
<td>Hearing History</td>
<td>Age at ID, age at amp</td>
<td>21%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>79.6%</td>
</tr>
</tbody>
</table>
Factor Analysis

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>A</th>
<th>+V</th>
<th>A</th>
<th>+V</th>
<th>+N</th>
<th>+N</th>
<th>+DNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>0.29</td>
<td>0.42*</td>
<td>0.48*</td>
<td>0.51*</td>
<td>0.45*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audibility</td>
<td>0.58*</td>
<td>0.49*</td>
<td>0.54*</td>
<td>0.54*</td>
<td>0.55*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing History</td>
<td>0.03</td>
<td>-0.04</td>
<td>0.04</td>
<td>-0.03</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=Auditory, V=Visual, N=Noise, DNR=digital noise reduction
Conclusions

• Normal-hearing children
 – Tasks unrelated to hearing did not affect their performance for auditory tasks

• Hearing-impaired children
 – Tasks unrelated to hearing did interfere with their performance for auditory tasks
 – Consistent with comments of parents and teachers
 • “When they’re busy doing something else they don’t pay attention to what I say.”
Conclusions

• Hearing-impaired children
 – Performance for increasingly demanding tasks was related to:
 • Communication/Intelligence
 • Audibility of the signal
 – Performance was not affected by:
 • Previous hearing aid experience
 • Digital noise reduction
To Fit or Not to Fit Digital Noise Reduction on Children?

• As long as digital noise reduction is working reasonably well, it is appropriate for children
 – No evidence that digital noise reduction decreases performance in children
 – No evidence that previous hearing aid use prevents their ability to use digital noise reduction effectively

• Benefits of digital noise reduction
 – Improve listening comfort without affecting performance