Word-Learning in Children with Hearing Loss using Digital Noise Reduction

Andrea Pittman
Arizona State University

© 2012 Andrea Pittman All rights reserved
Why study word learning?

• Critical accomplishment of childhood
• Cognitively demanding
• Word learning is vulnerable to listener and stimulus characteristics
• Children with hearing loss have smaller vocabularies than children with normal hearing
The Word Learning Process

• Word Learning Model (Storkel & Lee 2011)
 – Triggering
 • Detection of a new word
 – Configuration
 • Form a stable acoustic representation
 • Form a semantic representation
 – Engagement
 • Using the new word with other words
TRIGGERING PARADIGM
Stimuli

Close all three doors x0

Cooks make hot foo m x1

They want pome gorn x2
Triggering Paradigm
Scoring

- Overall performance (percent correct)
- Error analyses
 - Under-triggering
 - Over-triggering
E&H (in press)

EFFECTS OF SEMANTIC AND ACOUSTIC CONTEXT ON NON-WORD DETECTION IN CHILDREN WITH HEARING LOSS
Participants

45 children (7-12 years)
- 29 children with normal hearing
- 16 children with hearing loss
 - Mild to moderately-severe losses

© 2012 Andrea Pittman All rights reserved
Results
EFFECTS OF NARROW AND WIDEBAND LISTENING CONDITIONS ON NON-WORD DETECTION

(in process)
Stimulus Bandwidth

![Graph showing stimulus bandwidth with level in dB SPL on the Y-axis and frequency in Hz on the X-axis. The graph indicates a bandwidth of 4 kHz, with different levels for narrowband (NB) and wideband (WB) frequencies.]
Preliminary Results
Normal-Hearing Children

© 2012 Andrea Pittman All rights reserved
Preliminary Results
Hearing-Impaired Children

© 2012 Andrea Pittman All rights reserved
Summary

• Children with hearing loss have difficulty detecting new words

• Signal degradation further reduces detection and inhibits the advantages of age
CONFIGURATION PARADIGM
Configuration Paradigm

- Novel words are created
- Novel images are obtained or created
- Paradigm relating the words to the images is administered
- Learning (performance) is assessed
Learning Game
Data Reduction

![Graph showing data reduction performance over trials](image-url)
Data Reduction

\[P_c = 1 - 0.8e^{-n/c} \]
Data Reduction

![Graph showing performance over trials with averaged data and averaged fits.](image-url)
SHORT-TERM WORD LEARNING RATE IN CHILDREN WITH NORMAL HEARING AND CHILDREN WITH HEARING LOSS IN LIMITED AND EXTENDED BANDWIDTHS
Stimuli

<table>
<thead>
<tr>
<th></th>
<th>4 kHz</th>
<th>9 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>sothnud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>doztul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fosnush</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stomun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>homtul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

NORMAL HEARING

HEARING LOSS

PERFORMANCE (%)

TRIALS

TRIALS

© 2012 Andrea Pittman All rights reserved
AGE-RELATED BENEFITS OF DIGITAL NOISE REDUCTION FOR SHORT-TERM WORD LEARNING IN CHILDREN WITH HEARING LOSS
Which hearing aid to use?

Hearing Aid 1

Hearing Aid 2

Hearing Aid 3

Hearing Aid 4

© 2012 Andrea Pittman All rights reserved
Stimuli

| List 1 | daystin
gaysmit
maystill
tayskit
kaystill |
|--------|----------|
| List 2 | smentos
pedton
depmost
sentop
kensom |
| List 3 | sothnud
doztul
fonshush
stomun
homtul |

Stimuli were presented in the sound field

- 0 degrees azimuth
- 50 dB SPL
- Broadband noise at 0 dB SNR
Results
Normal-Hearing Children

8-9 YEAR OLDS

11-12 YEAR OLDS

© 2012 Andrea Pittman All rights reserved
Results
Hearing-Impaired Children

8-9 YEAR OLDS

11-12 YEAR OLDS

PERFORMANCE (%)

TRIAL

TRIAL

© 2012 Andrea Pittman All rights reserved
There’s good news and there’s bad new.
The bad news...

- Hearing loss slows word learning
- Acoustic degradation slows word learning further
 - Narrowing the bandwidth
 - The presence of noise
- Benefits of age are reduced
The good news...

• Subtle forms of signal processing improve word learning
 • Widening the bandwidth
 • Digital noise reduction
• AND... the benefits of age are restored
Acknowledgements

• Funding
 – ASHA Foundation

• Professional Assistance
 – Oticon
 – Phonak
 – Resound
 – Siemens
 – Sonic
 – Starkey
 – Widex

• Research Assistants
 – Rachel Henrickson
 – Nicole Corbin
 – Mollie Hiipakka
 – Madalyn Rash
 – Ashley Pederson
 – Amanda Willman
 – Allison Latto
 – Brittany Schuett
 – Samantha Gustafson