Children, Hearing Aids, and Cognitive Demand

Part II

Andrea Pittman
Arizona State University
www.pedamp.asu.edu

Copyright © Andrea Pittman 2012
Children vs. Adults

Adults use their hearing aids to \textit{continue} to communicate while children use their hearing aids to \textit{learn} to communicate.
What do they need to learn?

1. Manage complex environments
2. Learn new vocabulary
Listening Effort and Fatigue
(Hicks & Tharpe, 2002)

Children
14 HI Children
14 NH Children

Copyright © Andrea Pittman 2012
Listening Effort and Fatigue
(Hicks & Tharpe, 2002)

Auditory
- Word repetition
- Percent words correct
- Varied signal-to-noise

Visual
- Button pushing
- Reaction time
Listening Effort and Fatigue
(Hicks & Tharpe, 2002)

Auditory
Word repetition
Percent words correct
Varied signal-to-noise

Visual
Button pushing
Reaction time

Word Repetition
Signal-to-Noise Ratio

Reaction Time
Signal-to-Noise Ratio
Listening Effort and Fatigue
(Hicks & Tharpe, 2002)

Auditory
Word repetition
Percent words correct

Figure 5. Speech recognition (PBK) scores by condition for children with hearing loss (HL) and children with normal hearing (NH). Bars represent 1 standard deviation.

Visual
Button pushing
Reaction time

Figure 4. Average reaction time difference scores by condition for children with hearing loss (HL) and children with normal hearing (NH). Bars represent 1 standard deviation.
Managing Complex Tasks
(Pittman, 2011)

Children
30 HI Children
50 NH Children

Copyright © Andrea Pittman 2012
Managing Complex Tasks
(Pittman, 2011)

Auditory
Word categorization
Percent words correct
0 dB SNR

Visual
Dot-to-dot games
Dots/minute

Person
Food
Animal

Copyright © Andrea Pittman 2012
Managing Complex Tasks
(Pittman, 2011)

Auditory
Word categorization
Percent words correct
0 dB SNR

Noise Reduction Off

Noise Reduction On

Copyright © Andrea Pittman 2012
Managing Complex Tasks
(Pittman, 2011)

Figure 7. Average (+1 SD) word categorization (percentage correct) as a function of listening condition (in order of difficulty) for the children with NH (filled bars) and the children with HL (open bars).
Auditory/Visual Task Preference
(Pittman et al, fresh from the booth)

Children
23 HI Children
32 NH Children

AGE (years)
HEARING LOSS (degree)
Auditory/Visual Task Preference
(Pittman et al, fresh from the booth)

CHILDREN WITH NORMAL HEARING

CHILDREN WITH HEARING LOSS

Copyright © Andrea Pittman 2012
Conclusions

• Children with hearing loss excel at visual tasks.
• In children with hearing loss, visual competitors detract from auditory task performance.
• Complex environments appear to be most detrimental to a child’s weakest modality.
LEARNING NEW WORDS
The Word Learning Process

• Word Learning Model (Storkel & Lee 2011)
 – Triggering
 • Detection of a new word
 – Configuration
 • Form a stable acoustic representation
 • Form a semantic representation
 – Engagement
 • Using the new word with other words
Non-word Detection
(Pittman & Schuett, in press)

Children
19 HI Children
29 NH Children
Non-word Detection
(Pittman & Schuett, in press)

Close all three doors.

Cooks make hot foo\textit{m}.

They want \textit{pum gorn}.
Non-word Detection
(Pittman & Schuett, in press)

• Overall performance (percent correct)
• Error analyses
 – Under-triggering
 – Over-triggering
Non-word Detection
(Pittman & Schuett, in press)

Copyright © Andrea Pittman 2012
Non-Word Detection and Bandwidth
(Pittman et al, in process)

Children
19 HI Children
33 NH Children
31 HI Adults
18 NH Adults
Non-Word Detection and Bandwidth
(Pittman et al, in process)

Close all three doors.

Cooks make hot foom.

They want pum gorn.

4 kHz 9 kHz
Non-Word Detection and Bandwidth

(Pittman et al, in process)
Non-Word Detection and Bandwidth
(Pittman et al, in process)
Conclusions

• Hearing loss disrupts the detection of new words and may prolong the word learning process.

• A subtle hearing aid feature, like extended bandwidth, may significantly improve the detection of new words.
Word Learning and Bandwidth
(Pittman, 2008)

Children
26 HI Children
41 NH Children

Copyright © Andrea Pittman 2012
Word Learning and Bandwidth
(Pittman, 2008)
Word Learning and Bandwidth
(Pittman, 2008)

\[P_c = 1 - 0.8e^{-n/c} \]
Word Learning and Bandwidth
(Pittman, 2008)
Word Learning and Noise Reduction (Pittman, 2011)

Children
26 HI Children
40 NH Children

Noise Reduction Off
Noise Reduction On

Copyright © Andrea Pittman 2012
Word Learning and Noise Reduction
(Pittman, 2011)

Normal Hearing

8-9 YEAR OLDS

11-12 YEAR OLDS

Copyright © Andrea Pittman 2012
Word Learning and Noise Reduction
(Pittman, 2011)

Hearing Loss

8-9 YEAR OLDS

11-12 YEAR OLDS

Copyright © Andrea Pittman 2012
SO WHAT CAN WE CONCLUDE?
Conclusions

• Speech perception tests are sensitive to the overall effects of amplification.
• Cognitively demanding tasks are sensitive to the subtle effects of advanced hearing aid features.
Advanced Hearing Aid Features

Digital noise reduction
1. Maintains auditory task performance in a complex environment
2. Promotes word learning in older grade-school children with hearing loss

Extended high-frequency bandwidth
1. Aides in the detection of new words
2. Promotes word learning in younger and older grade-school children.
Acknowledgements

• Funding
 – ASHA Foundation
 – Phonak AG

• Professional Assistance
 – Oticon
 – Phonak
 – Resound
 – Siemens
 – Sonic
 – Starkey
 – Widex

• Research Assistants
 – Rachel Henrickson
 – Nicole Corbin
 – Mollie Hiipakka
 – Madalyn Rash
 – Ashley Pederson
 – Amanda Willman
 – Allison Latto
 – Brittany Schuett
 – Devin Anderson
 – Samantha Gustafson

Copyright © Andrea Pittman 2012