Auditory-Based Learning in Children and Adults with Hearing Loss

Andrea Pittman, PhD CCC-A
Arizona State University
Disclosures

This work was supported by grants from:

Research Assistants (The Pitt Crew):

Elizabeth Stewart Ian Odgear
Lauren Meadows Amanda Willman
Nicole Marzan Madalyn Rash
Beatriz Lazaro Brittany Schuett
Elizabeth Rainy Ashley Wright
Amy Stahl Jacelyn Olson
(and many more)

And collaborators:

Rachel Krupa – Mesa Public Schools, AZ, US
Judy Attaway – Casa Colina Hospital, CA, US
Dan Duran – Valley Children’s Hospital, CA, US
Tove Rosenbom – Oticon Medical, DK
Ravi Sockalingam – Oticon Medical, US
Liz Presson – Oticon Medical, US

© 2018 A. Pittman, All rights reserved
Learning something new

Vocabulary Learning and Hearing Loss

Air-Conduction Hearing Device Applications

- Oticon miniAlta RITE

- 21 children with SN hearing loss (8-12 years)

© 2018 A. Pittman, All rights reserved
Bone-Anchored Hearing Device Applications

Conventional Skin-Drive Percutaneous Direct-Drive

© 2018 A. Pittman, All rights reserved
Bone-Anchored Hearing Device Applications

<table>
<thead>
<tr>
<th>Authors</th>
<th>Configuration</th>
<th>Subjects</th>
<th>Speech Perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kara et al (2016)</td>
<td>Abutment vs. Softband</td>
<td>Adults and Children</td>
<td>Significant*</td>
</tr>
<tr>
<td>Verstraeten et al (2009)</td>
<td>Abutment vs. Softband</td>
<td>Adults</td>
<td>Abutment +10% better</td>
</tr>
<tr>
<td>Hol et al (2013)</td>
<td>Abutment vs. Magnet</td>
<td>Children</td>
<td>Abutment +7% better</td>
</tr>
</tbody>
</table>
To determine if the benefit of direct stimulation is limited to small improvements in speech perception or if direct stimulation also improves performance for auditory processes important for learning new information.
Method

Participants

17 children
10 boys, 7 girls
7 – 15 years
Method

Participants

17 children
10 boys, 7 girls
7 – 15 years

14 bilateral conductive
1 unilateral conductive
2 unilateral profound
Method

Participants

17 children
10 boys, 7 girls
7 – 15 years

14 bilateral conductive
1 unilateral conductive
2 unilateral profound
Method

Fitting & Testing

Direct Drive

Skin Drive

© 2018 A. Pittman, All rights reserved
Method

Verification

Interacoustics Affinity Hearing Aid Analyzer with SHS10 Skull Simulator
Method

Verification

![Graph showing force (µN) vs. frequency (kHz) for Skin Drive and Direct Drive, with a bar chart showing the difference (Skin-Direct) at various frequencies.](image)
Method

Verification

Aided Sound-Field Thresholds

- Skin Drive
- Direct Drive

Difference (Skin-Direct)
Method

Test Parameters
50 dB SPL in quiet
0° azimuth

Data Collection
Computer interface
Digital audio recordings
Test Battery

Word Recognition: How well they can recognize words they already know

Lexical Decision: How well they can recognize words they don’t know

Non-Word Detection: How well they can detect words they don’t know in context

Rapid Word Learning: How rapidly they can learn new words
Word Recognition

NU-6 Word Lists (25) words

Oticon miniAlta RITE

21 children with SN hearing loss (8-12 years)

© 2018 A. Pittman, All rights reserved
Word Recognition

Direct stimulation improved perception of familiar words.

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>79%</td>
<td>72%</td>
</tr>
<tr>
<td>SD</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

F(1,15) = 10.014, \(p = .006 \), N = .40

© 2018 A. Pittman, All rights reserved
Auditory Lexical Decision

<table>
<thead>
<tr>
<th>Repeat</th>
<th>Categorize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swim</td>
<td>Real</td>
</tr>
<tr>
<td>Swim</td>
<td>Not Real</td>
</tr>
<tr>
<td>Srim</td>
<td>Real</td>
</tr>
<tr>
<td>Srim</td>
<td>Not Real</td>
</tr>
<tr>
<td>Whim</td>
<td>Real</td>
</tr>
<tr>
<td>Whim</td>
<td>Not Real</td>
</tr>
</tbody>
</table>

“Glat”

<table>
<thead>
<tr>
<th>Repeat</th>
<th>Categorize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glat</td>
<td>Not Real</td>
</tr>
<tr>
<td>Glat</td>
<td>Real</td>
</tr>
<tr>
<td>Glad</td>
<td>Not Real</td>
</tr>
<tr>
<td>Glad</td>
<td>Real</td>
</tr>
<tr>
<td>Grat</td>
<td>Not Real</td>
</tr>
<tr>
<td>Grat</td>
<td>Real</td>
</tr>
</tbody>
</table>
Auditory Lexical Decision

Direct stimulation improved children’s lexical decisions.

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>72%</td>
<td>59%</td>
</tr>
<tr>
<td>SD</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

\[F(1,15)=11.948, \ p=.004, \ N=.44 \]
Non-Word Detection 2.0

<table>
<thead>
<tr>
<th># of nonsense words</th>
<th>Example phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clocks tick on time.</td>
</tr>
<tr>
<td>1</td>
<td>Birds rike long worms.</td>
</tr>
<tr>
<td>2</td>
<td>Dats catch slow bice.</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
Non-Word Detection 2.0

23 children with SN hearing loss (8-17 years)

© 2018 A. Pittman, All rights reserved
Non-Word Detection 2.0

Direct stimulation did NOT improve detection of unfamiliar words in context.

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.41</td>
<td>1.18</td>
</tr>
<tr>
<td>SD</td>
<td>0.95</td>
<td>1.08</td>
</tr>
<tr>
<td>N</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

F(1,16)=1.975, p=.179, N=.11
Rapid Word Learning

Learning something new

PERFORMANCE (% Correct)

$P_c = 1 - 0.80e^{-n/c}$

Learning Speed:
3 = 1 trial (perfect learning)
2 = 10 trials
1 = 100 trials
0 = 1000 trials (no learning)

© 2018 A. Pittman, All rights reserved
Rapid Word Learning

Oticon miniAlta RITE

21 children with SN hearing loss
20 children with normal hearing (8-12 years)

Direct stimulation significantly improved the speed of word learning.

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.22</td>
<td>.78</td>
</tr>
<tr>
<td>SD</td>
<td>.21</td>
<td>.16</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

F(1,15)=7.694, p=.014, N=.34

Trials 60 166
What have we learned?

Detecting and learning new words is...

... more challenging than recognizing familiar words

... independent of the type of amplification device

... determined by the quality of the auditory input
Thank you